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CONTINUATION METHODS FOR QUALITATIVE ANALYSIS OF
AIRCRAFT DYNAMICS

Peter A. Cummings∗

ABSTRACT

A class of numerical methods for constructing bifurcation curves for systems of coupled, non-
linear ordinary differential equations is presented. Foundations are discussed, and several vari-
ations are outlined along with their respective capabilities. Appropriate background material
from dynamical systems theory is presented.

1 INTRODUCTION

Development of a model for the macroscopic motion of aircraft begins with the rigid body equa-
tions of motion, a system of coupled, nonlinear ordinary differential equations (ODEs). The final
model, called theaircraft equations of motion, is of the form

ẋ = f(x, u) (1)

Bothx andu are multi–dimensional, and the exact number of components depends on the aircraft
and on the reference frame in which the model is developed. In any case, components ofx are
commonly referred to as thestate variables, and components ofu as thecontrol variables.

Quantitative analysis of the equations of motion often involves numerical solution of a simpli-
fied version of (1). A typical approach is to assume that the aircraft’s motion is limited to small
variations from a reference, or trim, condition. Mathematically, this is equivalent to linearizing
the equations of motion, or assuming that the state variables are of the formx0 + ∆x, wherex0

characterizes the reference condition and∆x represents a small perturbation from the reference
condition.

Simplifying assumptions are useful and effective when applied to perturbations from a refer-
ence flight condition. In order to achieve successful and consistent predictions of dynamical be-
havior of aircraft for large amplitude general motions, however, one must eschew the conventional
linearity assumptions and incorporate a suitable nonlinear description.

Because aircraft motion is modeled with a system of nonlinear ODEs, techniques from dy-
namical systems theory show promise for expanding the understanding of nonlinear aspects of
flight dynamics. The dynamical systems approach isqualitative; one does not seek to numeri-
cally or explicitly calculate particular solutions. Rather, one endeavors to glean information about
the qualitative nature of all solutions. Moreover, one wishes to determine if and how qualitative
characteristics change when the system parameters are subject to perturbation. For flight dynam-
ics problems, treating control surface deflections as parameters in qualitative analysis can reveal
information about aircraft stability regimes.

Mehra, Kessel and Carroll [13] were among the first to suggest a dynamical systems approach
to achieving a global, qualitative understanding of nonlinear aircraft dynamics. They christened
their technique thebifurcation analysis and catastrophe theory methodology, or BACTM, and used
tools rooted in dynamical systems theory to analyze and construct stability boundaries for aircraft
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such as the F100A and F-80A. Other studies of note include Jahnke and Culick’s work on the
F-14 [7]; Goman, Zagainov and Khramtsovsky’s applications of the qualitative methodology to
roll-coupling, stall and spin problems [5]; and Ananthkrishnan and Sinha’s extended bifurcation
analysis procedure [2].

In all of the above studies, a primary goal is to construct equilibrium curves and/or surfaces for
the relevant aircraft models. Indeed, equilibrium and bifurcation information is the cornerstone of
qualitative analysis for any system of ODEs. Constructing the equilibrium curves poses a consid-
erable challenge, and a mathematical technique known as thecontinuation methodhas emerged as
the technique of choice in this venture. The continuation method has its pedigree in a 1953 work
of D.F. Davidenko [1], whose fundamental observation forms the theoretical foundation of most
contemporary continuation methods. The method has evolved considerably since the publication
of Davidenko’s seminal work; contributions from mathematicians such as R.W. Klopfenstein and
H.B. Keller have been instrumental in refining the technique to its present sophistication.

The purpose of this report is to provide a mathematical investigation of continuation methods,
their foundations, capabilities and variations. Section 2 gives a brief discussion of dynamical
systems to provide context. A simple example illustrates the main ideas of bifurcation curves.
Section 3 proceeds to a detailed presentation of continuation methods. Sections 3.1 and 3.2 discuss
embedding methods; section 3.1 introduces the concepts, and section 3.2 presents polynomial
continuation - a particular type of embedding method - along with some simple examples. Section
3.3 outlines the two varieties of parameter continuation methods: natural parameter and artificial
parameter continuation. Finally section 3.4 discusses bifurcation detection and branch switching.

2 DYNAMICAL SYSTEMS

The theory of dynamical systems is a broad methodology for the study of deterministic processes.
This section highlights those aspects of dynamical systems theory that are relevant to the study of
flight models, i.e. those that are generally used in the qualitative analysis of systems of coupled,
nonlinear ordinary differential equations. For a more complete treatment of dynamical systems,
see [6] or [12].

The general idea of qualitative analysis of ODEs is to predict long–term behavior of solutions
without actually solving the differential equations. To that end, two main tasks are paramount –
calculating equilibrium solutions, and determining their stability. If the system is of the form

ẋ = f(x), (2)

then all equilibria must satisfy the algebraic equation

f(x) = 0, (3)

and finding the equilibrium for system (2) therefore amounts to solving a nonlinear algebraic sys-
tem. Once equilibrium solutions are found, determining stability is straightforward. A famous
result of Lyapunov implies that an equilibrium point of (2) is stable if all eigenvalues of the Ja-
cobian off evaluated at the equilibrium have negative real parts. Because determining stability
is relatively easy once the equilibria are known, finding equilibria is the more difficult task and
typically receives more attention.

For systems of the form (2), the fundamental tasks of qualitative analysis reduce to numerical
calculations for which there are many well–known numerical methods. If the system includes a
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parameter, however, the situation becomes more involved. Consider a system of the form

(label : ”brimstone”)ẋ = f(x, λ). (4)

To find the equilibria of system (4), one must solve the algebraic equation

(label : ”jupiter”)f(x, λ) = 0. (5)

The presence of parameterλ complicates the task of finding equilibria. A complete qualitative
study of the dynamics of (4) must now include equilibria as a function of the problem parameter.
That is, one must find a functionx(λ) such thatf(x(λ), λ) = 0 for some appropriate range of
values for the parameter. A simple but detailed example is illustrative.

Example (Bead on a rotating hoop):Suppose a bead of massm is threaded on a circular
hoop of radiusr. The hoop rotates with a constant angular velocityω about a vertical axis that
corresponds to a diameter of the hoop. The bead slides freely, but its motion is damped by friction
and gravitational forces. The motion of the bead on the hoop is governed by the following system
of ODEs [17]:

(label : ”bolero”)
ẋ1 = x2

ẋ2 = −b
mr
x2 + ω2 sin x1

(
cosx1 − g

rω2

) (6)

wherex1 is the counter–clockwise angle of the bead’s position from the bottom, measured in
radians. For example, if the bead is at the 3 o’clock position, thenx1 = π/2. Note thatx2 is the
angular velocity of the bead,g is the acceleration due to gravity andb is a damping constant; see
figure 1.

•
χ

1

Figure 1:Bead on a Rotating Hoop

Assuming for simplicity thatr = g, system (6) is of the form (4) wherex := [x1, x2]T and
λ := ω2. To calculate equilibrium solutions, set the derivatives in (6) equal to zero and solve the
resulting algebraic system. In this simple example, the solutions can be found explicitly. At an
equilibrium solution,x2 must be zero (the bead is stationary) andx1 must satisfy

sin x1

(
cosx1 −

1

λ

)
= 0. (7)
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It is clear from equation (7) that the number of equilibria depend on the parameterλ. Whenλ ≤ 1,
x1 = 0 andx1 = −π are the only two equilibria in the interval[−π, π). Whenλ > 1, two
additional equilibria appear atx1 = ± arccos(1/λ).

It is also straightforward to determine the stability of equilibria. The Jacobian of the system is

J :=

[
0 1
ω2 cosx1

(
cosx1 − 1

λ

)
− ω2 sin2 x1

−b
mr

]
, (8)

and therefore the characteristic equation is

s2 +
b

mr
s−

(
ω2 cosx1

(
cosx1 −

1

λ

)
− ω2 sin2 x1

)
= 0. (9)

Note that the Jacobian and the characteristic equation are independent ofx2. Whenx1 = 0, the
roots of the characteristic equation are

s =

−b
mr
±
√

b2

m2r2 − 4ω2
(
1− 1

λ

)
2

. (10)

Stability ofx = 0 can thus determined by inspection. Ifλ > 1, or equivalently if4ω2(1−1/λ) > 0,
thenJ has exactly one positive real eigenvalue, andx1 = 0 is unstable. Ifλ < 1, or equivalently
if 4ω2(1 − 1/λ) < 0, thenJ has either two complex eigenvalues with negative real parts (when
the discriminant is negative), or two negative real eigenvalues (when the discriminant is positive).
In either case, the equilibriumx1 = 0 is stable. A similar analysis shows thatx1 = −π is always
unstable, and the equilibria atx1 = ± arccos(1/λ) are always stable when they exist.

After determining all information about equilibria and their associated stabilities, the results
can be interpreted in the context of the original problem. That is, one can use equilibria information
to predict the behavior of the bead in terms of the parameterλ. Whenλ ≤ 1, the bottom position
represents a stable equilibrium, and the top represents an unstable equilibrium. If the bead’s initial
position is the top or the bottom, it will remain at its initial position for all time. All other initial
positions will approach the bottom. In this situation, the angular velocityω is less than the critical
value

√
g/r; the centrifugal force of the bead is not enough to overcome the force of gravity, and

the bead tends toward the bottom.
As the angular velocity of the hoop increases beyond the critical value

√
g/r, λ increases past

1. The bottom position becomes unstable, and two stable equilibria appear at symmetric points on
the hoop. Centrifugal force is now sufficient to overcome the force of gravity.

It is useful to summarize the results graphically by plotting abifurcation diagram, which con-
sists of curves that depict equilibria in terms of the parameterλ. By convention, solid lines indicate
stable equilibria and dashed lines to indicate unstable equilibria. Figure 2 shows the bifurcation
diagram for system (6). The curve bifurcates at the critical valueλ = 1. At this point, two addi-
tional branches appear (corresponding to the two additional equilibria), and the equilibriumx1 = 0
changes stability.

Constructing the bifurcation diagram is an effective technique for comprehensively describing
the dynamics of a system of nonlinear ODEs. The diagram shows not only the type and number of
equilibria in terms of the problem parameter, but also critical orbifurcationvalues where stability
changes and/or new equilibria appear. This is the essence of qualitative study of systems of ODEs.
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Figure 2:Bifurcation Diagram, Bead on a Rotating Hoop

Unfortunately, constructing the bifurcation diagram is rarely as straightforward as it is for
system (6). In general, it will not be possible to solve the algebraic system (5) analytically, and one
must therefore develop appropriate numerical techniques to construct the curves. One such class
of techniques are continuation methods.

3 CONTINUATION METHODS

Continuation methods are numerical methods for solving nonlinear equations of the form

f(x, λ) = 0 (11)

wheref : <n × < → <n. In the context of continuation, “solve” does not mean merely to find a
single solution. Rather, a continuation method seeks to construct one or more paths or curves of
solutions, i.e. sets of the form

(label : ”mandibles”)Γ := {(x(λ), λ) : λ ∈ I, f(x(λ), λ) = 0} (12)

whereI is an interval of real numbers.
The need to construct the setΓ may arise from the need to solve an equation of the form

(label : ”nopar”)g(x) = 0 (13)

whereg : <n → <n andg(x) = f(x, λ)|λ=λ0 . In this case, the solution tog(x) = 0 represents
an endpoint of the curveΓ, and one is interested inΓ only insofar as it provides a means for
determining the solution tog(x) = 0. When the solution is found, the curveΓ is discarded. For
this type of application, continuation methods simply form another class of methods for solving
nonlinear equations. It is worth noting, however, that for certain classes of problems, continuation
methods can have significant advantages over conventional alternatives such as iterative nonlinear
solvers. For example, although Newton’s method is a rapidly convergent scheme, it requires a good
initial approximation and finds only one solution. Certain formulations of continuation methods,
on the other hand, find all solutions without an initial guess. We will discuss examples in sections
3.1 and 3.2.

Though continuation methods sometimes provide an attractive alternative to conventional non-
linear solvers, the real power of continuation methods lies in their ability to solve problems that
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appear explicitly in the form (11). Among such problems is, of course, the problem of construct-
ing a bifurcation curve for a system of ODEs. In this case, no information is discarded, and no
computational work is wasted, becauseΓ itself is the solution.

In all cases, the general idea of a continuation method is that of apredictor–correctorscheme.
Starting with an initial point on the “continuation path,” the goal is to trace the remainder of the
path in steps. At each step, the algorithm first predicts the next point on the path, and subsequently
corrects the predicted point toward the solution curve. Newton’s method – or some variant of New-
ton’s method – is nearly always used for the corrector step. The purpose of the predictor step is to
supply an adequate initial guess to the Newton corrector. Consequently, success of a continuation
method depends critically on the appropriate choice of a predictor. That is, the predictor must
successfully choose a good approximation to the next point on the continuation curveat every
stepalong the curve in order for the overall continuation scheme to be effective. The other main
consideration is bifurcation detection; an effective method must detect and follow branches. The
sections that discuss several continuation methods, from the simple to the sophisticated.

Before proceeding to discuss specific examples of continuation algorithms, it is appropriate to
turn briefly to the issue of existence. When solving a problem numerically (or analytically, for
that matter), it is expedient to knowa priori that the problem in question has a solution. In the
case of continuation methods, the existence question can be framed as follows. Given a solution
(x0, λ0) to f(x, λ) = 0, when does a curve of the formΓ exist that passes through(x0, λ0)? A
simple application of the Implicit Function Theorem (IFT) answers the question definitively. The
IFT can be stated and proved in abstract settings, but the following version in Euclideann−space
is sufficient for our purposes.

Theorem 1 (Implicit Function Theorem) Supposef : <n × < → <n, x0 ∈ <n, λ0 ∈ < such
that

1. f(x0, λ0) = 0;

2. fx(x0, λ0) is nonsingular;

3. f , fx(x0, λ0) are continuous on the set{(x, λ) : ‖x − x0‖ < ε1, |λ − λ| < ε2} for some
ε1, ε2 > 0.

Then there exists a continuous functionϕ : (λ0 − ε2, λ0 + ε2)→ < such that

i. x0 = ϕ(λ0);

ii. f(ϕ(λ), λ) = 0 for all λ ∈ (λ0 − ε2, λ0 + ε2);

iii. For eachλ ∈ (λ0 − ε2, λ0 + ε2), ϕ(λ) is a unique solution off(x, λ) = 0 in the set{x :
‖x− x0‖ < ε1}.

In other words, when the functionf satisfies conditions 1-3 in the hypothesis of the IFT, one
can solve equation (5) locally forx as a function of the parameterλ. Furthermore, the function
that represents the solution is unique in an appropriate neighborhood. In practice, one generally
monitors the status of hypothesis 2 while tracing a continuation curve.
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3.1 Embedding Methods

The most basic continuation methods are embedding methods, a class of methods for solving
g(x) = 0 whereg : <n → <n. Though this method has limited application, a brief discussion is
warranted because it gives a gentle introduction to the main concepts of continuation.

The idea is simple. To solveg(x) = 0, embedg(x) = 0 in a family of problems,h(x, λ) (for
λ ∈ [0, 1]) where

• h(x, 0) = 0 is “easy” to solve;

• h(x, 1) = g(x); and

• the solution ofh(x, λ) = 0 changes smoothly forλ ∈ [0, 1].

The functionh is variously referred to as ahomotopy, deformation,or embedding. In order to
calculate a solution tog(x) = 0, start with a solutionx0 to f(x, λ0) = 0 (λ0 = 0) and varyλ
monotonically through[0, 1], updating the solution with each new value ofλ. Whenλ reaches 1,
the solution is found.
Example (Convex embedding):Define

(label : ”convex”)h(x, λ) = (1− λ)f(x) + λg(x) (14)

where at least one solution,x0 of f(x) = 0 is known. The continuation algorithm for the convex
embedding is as follows:

Algorithm For i = 1, 2, ...,m; do

Step 1Putλi = λi−1 + ∆λ (∆λ = 1
m
, λ0 = 0)

Step 2Solveh(x, λi) iteratively, using(xi−1, λi) as the initial guess.

The predictor step increments the parameter, and uses thex−coordinate from the previous
step as the initial guess for the corrector. The convex embedding is simple to understand and to
implement, but unfortunately works for only the most contrived problems. It is easy to anticipate
a variety of difficulties with the convex embedding algorithm. If the continuation path is too
steep, for example, the predictor may stray too far from the path to provide an adequate initial
guess for the corrector. If continuation paths cross, the method may trace the wrong path at the
crossing point; this situation may occur in problems that have mathematical solutions (in addition
to physical solutions) which do not make sense in the physical context of the problem. Other
more serious problems such as backtracking and path divergence can cause the convex embedding
method to fail. See figure 4 for schematics of bad path behaviors.

Elementary modifications to the convex embedding algorithm can handle, or even remove bad
path behaviors in some cases. The cure nearly always amounts to designing an “intelligent” pre-
dictor that can trace the path more tightly. Modifying the convex embedding to include an adaptive
step length scheme, for example, may handle difficulties with steep paths or path crossing. Other
cures for steep paths and path crossing include the use of tangent or higher order predictors. For
polynomial systems, complex embeddings preclude path divergence and path crossing situations.
The next section discusses these methods briefly.
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Figure 3:Convex Embedding

3.2 Polynomial Continuation

Polynomial continuation is an embedding method. In order to solve the polynomial systemg(x) =
0, embed the system in a family of problemsh(x, λ) = 0 as described at the beginning of section
3.1. By exploiting properties of polynomial systems, the method finds all solutions without an
initial guess while avoiding backtracking, path crossing, and path divergence. Alexander Morgan
has done extensive research in the field of polynomial continuation and the content of this section
borrows heavily from his work; see [15] and [14].

In this section, assume thatg(x) is a polynomial function mapping<n to <n whose solutions
are geometrically isolated. That is,g(x) is of the form

g(x) =


g1(x1, x2, ..., xn)
g2(x1, x2, ..., xn)

...
gn(x1, x2, ..., xn)

(15)

where eachgj is a polynomial inn–variables (i.e.gj : <n −→ <), and the solution set ofg(x) = 0
is discrete, that is, each solution is geometrically isolated. The terms ofgj are of the form

c

n∏
k=1

xmkk

wherec is a constant and eachmk is a non–negative integer The degree of a term ofgj is by
definition

n∑
k=1

mk
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Steep Path

Path Splitting/Crossing

Path Divergence
Backtracking

Figure 4:Bad Path Behaviors

and the degree ofgj is the maximum of the degrees of all its terms. Thetotal degreeof the system
is defined as

d :=
n∏
j=1

dj

wheredj is the degree ofgj. Since the roots ofg are isolated,d is an upper bound on the number
of distinct roots [14].

The homotopy for polynomial continuation takes the form of equation (14), and determining
the homotopy amounts to appropriately constructing the functionf . The idea is to choose a function
with roots that are easy to find and which has at least as many solutions as the functiong. Each
solution off will then serve as a starting point for a continuation path that converges to a solution
of g. By tracing all continuation paths, the method theoretically finds all solutions ofg(x) = 0.

Consider the function
fj(xj) = p

dj
j x

dj
j − q

dj
j (16)

wherepj andqj are randomly chosen complex constants. Treating eachfj as a function from<n
to<, define aninitial systemf(x) in terms of thefj functions as follows:

f(x) :=


f1(x1)
f2(x2)

...
fn(xn)

(17)

9



For eachj, the equationfj(xj) = 0 hasdj distinct solutions which are easy to calculate using the
dthj roots of unity. The solutions are

qj
pj
ei2πk/dj

wherek = 1, 2, ..., dj. It is easy to see, therefore, that the equationf(x) = 0 hasd solutions, and
each solution is of the form

(label : ”dynamo”)

(
q1

p1

ei2πk1/d1 ,
q2

p2

ei2πk2/d2 , ...,
qn
pn
ei2πkn/dn

)
(18)

wherekj = 1, ..., dj for eachj = 1, ..., n. We now define the homotopyh(x, λ) in terms off and
g as in equation (14); that ish(x, λ) = (1− λ)f(x) + λg(x).

A homotopy defined as above has the desired properties:h(x, 0) = f(x) = 0 is easy to
solve (the solutions are given by (18));h(x, 1) = g(x); and the solution ofh(x, λ) = 0 changes
smoothly with respect toλ. Moreover, by embedding the original real–valued problem in a fam-
ily of complex–valued problems, backtracking and path crossing are eliminated. The following
theorem, whose proof is in [14], summarizes the points.

Theorem 2 (Morgan) Supposeg(x) = 0 is a polynomial system whose solutions are geometri-
cally isolated, andh(x, λ) is defined as above. Then there are sets of measure zeroAp andAq such
that if (p1, p2, ...pn) 6∈ Ap and(q1, q2, ...qn) 6∈ Aq, then

1. The setΓ := {(x, λ) ∈ Cn × [0, 1) : h(x, λ) = 0} is a collection ofd smooth paths that do
not cross or backtrack; and

2. at least one continuation path converges to each geometrically isolated solution ofg(x) = 0.

For purposes of implementation, this result essentially means that the complex constantspi andqi
can be chosen at random, and the method will find all solutions of the problem (15). The method
will only fail if the constants are chosen from the setsAp andAq, but the properties of the sets
assures that such a choice occurs with probability zero.

The number of paths that converge to a given geometrically isolated solution is, in fact, equal
to the multiplicity of the solution. A general definition of multiplicity for multi–variate polynomial
functions requires algebraic geometry and is beyond the scope of this report. However, systems
with only geometrically isolated solutions share an important property with scalar polynomials
of one variable. To wit, the sum of the multiplicities of the roots must equal the total degree of
the system. The implication is that every continuation path must converge to some solution of
g(x) = 0, and therefore no paths are divergent.

Becauseh(x, λ) consists of paths that do not cross or backtrack, the only remaining bad path
behavior to address is that of steep paths. A simple adaptive step length scheme is sufficient. In
designing an algorithm, one chooses a tolerance, a maximum step size and a maximum number of
corrector iterations. If the corrector does not converge to within the given tolerance after executing
the specified number of iterations, halve the step size, re–calculate the initial guess, and try again.
If several consecutive correctors succeed, double the step size, staying under the maximum, and
continue. In practice, the maximum iterations is set at 3–5. This simple adaptive scheme works
well for the polynomial embedding. The following examples apply the method to two–dimensional
systems.
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Example: Consider the system

(label : ”roundup”)

{
x2

1 +x2
2 − 25 = 0

x2
1 −9 = 0

(19)

The total degree of the system is 4, and it has four distinct geometrically isolated solutions,(3, 4),
(−3, 4), (3,−4) and(−3,−4). The continuation method generates four continuation paths, each
of which converges to a distinct solution of the system. Figure 5 shows the continuation paths. The
x1 coordinates are depicted with solid red lines,x2 coordinates with dotted blue lines. Note that
the vertical plane perpendicular to the parameter axis is the complex plane.
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Figure 5:Continuation Paths for System(19)

Example: As a second example, consider the system{
x2

1 +x2
2 −25 = 0

x2
1 −x2 −5 = 0

(20)

Again, the total degree of the system is 4, but now there are only three distinct solutions,(3, 4),
(−3, 4) and(0,−5). All solutions, however, are geometrically isolated, hence by theorem 2 all
continuation paths converge to some solution of (20). In this case, two continuation paths converge
to the solution (0,-5), therefore (0,-5) is of multiplicity 2.

Polynomial continuation is a highly effective method for solving polynomial systems, particu-
larly those systems with geometrically isolated solutions. Many examples of such problems occur
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Figure 6:Continuation Paths for System(20)

in kinematics (see [18] and chapter 10 of [14]) and in chemical equilibrium systems; see chapter
9 of [14]. Though beyond the scope of this report, polynomial continuation can also be applied to
systems with non–discrete solution sets. Successful application often amounts to, in some sense,
ana priori accounting of the system’s solution set.

3.3 Parameter Continuation

While embedding methods can be attractive alternatives to conventional nonlinear solvers for cer-
tain classes of algebraic systems, the effectiveness for systems involving a parameter is question-
able at best. The only conceivable approach is to specify a discrete set of values for the param-
eter, and apply an embedding for each separate value of the parameter. In other words, to solve
f(x, λ) = 0 using the embedding approach, one first must specify a set of values for the parameter,
sayλ1, λ2, ..., λM , and apply the method to each problemf(x, λj) = 0 separately, introducing an
artificial embedding parameter each time. This approach is grossly inefficient at best, as it requires
a set of continuation paths for each value of the parameter, and each path is discarded once its
endpoints are located. It is also ineffective because bifurcation detection and branch–switching
are problematic. The challenge for parameter dependent systems is to contrive a method whose
continuation paths coincide with the problem’s solution paths.

Henceforth, the term “parameter continuation” will describe such methods, i.e. those that
use a naturally occurring parameter to define the continuation paths. Though the term is in a
sense redundant (all continuation methods use a parameter), the term is convenient because it
distinguishes parameter methods from embedding methods.

12



3.3.1 Natural Parameter Continuation

In developing a parameter continuation method, one is faced with the problem of how to use a
natural parameter to define continuation paths. In his seminal paper [1], Davidenko sought to solve
this problem when he observed that solving (4) is equivalent to solving the differential equation

(label : ”market”)fx(x, λ)
dx

dλ
+ fλ(x, λ) = 0, (21)

with the initial conditionx(λ0) = x0 wheref(x0, λ0) = 0. It is therefore possible to construct
curves of the form (12) by numerically solving the solving the differential equation (21) with
an appropriate initial value. This differential approach is promising because its solution curves
correspond to solution curves of the original problem (4). Of course, any such method is likely
to break down at bifurcation points because of singularities in the Jacobian. The approach is also
suspect because it does not make explicit use of equation (4).

Natural parameter continuation is a method that exploits Davidenko’s observation in order to
define continuation paths, but also retains equation (4). As the name suggests, continuation paths
are defined using the natural parameter,λ. The idea is to derive a predictor–corrector scheme using
equation (21) to motivate the predictor. Starting with a point on the solution curve,(x0, λ0), use
equation (21) to first determine adirection vectorx′(λ0), that is,

fx(x0, λ0)x′(λ0) = −fλ(x0, λ0),

wherex′ denotes the derivative ofx with respect toλ. The predictor then increments the contin-
uation parameterλ, and predicts the next value ofx on the solution curve by linear extrapolation
along the direction vector,x′(λ0). In summary, the predictor takes the form

λp = λ0 + ∆λ

xp = x0 + ∆λx′(λ0)
(
x′(λ0) = − [fx(x0, λ0)]−1 fλ(x0, λ0)

)
.

After calculating the predictor, correct it toward the solution curve by holdingλ fixed atλp and
applying an iterative method to the problemf(x, λp) = 0 using(xp, λp) as an initial guess. In this
case, a Newton corrector takes the form

xk+1
p = xkp −

[
fx(xkp, λp)

]−1
f(xkp, λp). (22)

An equivalent form of the Newton corrector that does not require matrix inversion is

[fx(xkp, λp)](x
k+1
p − xkp) = −f(xkp, λp). (23)

In both cases,xkp denotes thekth iterate of Newton’s method forf(x, λp) = 0 with initial guess
xp. Figure 7 shows a graphical interpretation of natural parameter continuation. For obvious
reasons, the predictor in this method is commonly known as atangent predictor. Continuation
paths in the natural parameter method correspond to the original system’s solution curves. The
natural parameter method is well suited to trace steep paths and paths that cross or split because
the tangent predictor allows for tight path tracing, particularly when implemented with an adaptive
step length scheme. Unfortunately, the problem of backtracking remains, and the natural parameter
method fails at any such folds in the continuation curves.
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3.3.2 Artificial Parameter Continuation

Artificial parameter continuation extends the fundamental observation of Davidenko by exploiting
more appropriate curve parameterizations to develop a method that can trace past folds in the
continuation curves. Since the problem is to find a function of the formx(λ) such thatf(x(λ), λ) =
0, Davidenko observed that it is natural to differentiate (5) with respect toλ in order to obtain (21).
R.W. Klopfenstein showed [10] that Davidenko’s idea could be modified to solve the problem of
tracing solution curves past folds if one instead assumes that the curve is parameterized by an
artificial parameter rather than the natural parameterλ. That is, Klopfenstein’s method introduces
an artificial parameter,s, and differentiates (5) with respect tos to obtain the differential equation

(label : ”garden”)fx(x, λ)ẋ + fλ(x, λ)λ̇ = 0. (24)

As in the natural parameter method, solving (5) can now be accomplished by solving the differen-
tial equation (24) with initial conditionsλ(0) = λ0 andx(0) = x0.

The artificial parameter approach overcomes a major obstacle that the natural parameter ap-
proach fails to address. An appropriate choice of the artificial parameter, such as arclength, allows
the method to trace continuation curves around folds. The following definition and theorem char-
acterize paths that Klopfenstein’s method succeeds in tracing.

Definition 3 A solution(x0, λ0) of f(x, λ) = 0 is regular if

(label : ”fullrank”)rank [fx(x0, λ0) fλ(x0, λ0)] = n. (25)

A pathΓ := {(x(s), λ(s)) : f(x(s), λ(s)) = 0, s ∈ I} is regular if all points onΓ are regular.

The Implicit Function Theorem guarantees that a unique solution branch passes through any regu-
lar point, i.e., any point that satisfies the full-rank condition (25). Notice that iffx is nonsingular at
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a solution(x0, λ) of (5), thenfx(x0, λ0) has rankn, and therefore the full rank condition must hold.
It is possible, however, forfx(x0, λ0) to be singular at a regular solution. In fact, this is exactly the
case at folds. At a regular solution which is also fold,fx(x0, λ0) has rankn−1 andfλ(x0, λ0) must
be linearly independent from the columns offx(x0, λ0). Equivalently, the null space offx(x0, λ0)
has dimension1, andfλ(x0, λ0) does not lie in the range offx(x0, λ0). The following theorem
summarizes.

Theorem 4 Suppose(x0, λ0) is a solution off(x, λ) = 0. Then(x0, λ0) is regular if and only if

i. fx(x0, λ0) is nonsingular; OR

ii. dim N(fx(x0, λ0)) = 1 AND fλ(x0, λ0) 6∈ Rangefx(x0, λ0).

The proof is easy, and only requires application of the familiar result from linear algebra,

(label : ”totalrank”)rankT + dimN(T ) = n (26)

whereT is a linear operator on ann−dimensional vector space andN(T ) denotes the null space
of T . Note that folds are regular points where condition ii holds.

As in the natural parameter method, constructing solution curves by choosingξ and solving the
differential equation (21) is of questionable utility because it does not make explicit use of equation
(5). Again, instead of solving the differential equations, the goal is to develop a predictor–corrector
continuation scheme that uses Klopfenstein’s idea to motivate the predictor. The methodology first
appeared in [8].

The development of the artificial parameter method is analogous to the procedure for the nat-
ural parameter method. The key is to recognize that specifying a curve parameterization such as
arclength is equivalent to augmenting (5) with a constraint equation which exhibits explicit de-
pendence on the artificial parameter. The augmented system then assumes the role of the original
system, and the artificial parameters assumes the role ofλ. The advantage is that the constraint
equation can be chosen so as to preclude backtracking in the continuation parameter.

To that end, letξ(x, λ, s) = 0 denote the constraint equation, and augment (5) with the con-
straint. The method now seeks to solve the augmented system

(label : ”augmented”)

{
f(x, λ) = 0

ξ(x, λ, s) = 0
. (27)

For clarity, defineB := <n ×<, v := [x λ]T , and put

(label : ”bigF”)F(v, s) :=

{
f(x, λ)
ξ(x, λ, s)

. (28)

Thenξ : B × < −→ <, and thereforeF : B × < −→ B. It is easy to develop a continuation
scheme forF in analogy with the natural parameter method. Given a point(v0, s0) that satisfies
F(v, s) = 0, predict the next point on the curve in three steps. First, increment the artificial
parameters; let ∆s denote the size of the increment, i.e., the step length. Next, define the direction
vectorv̇0 according to

Fv(v0, s0)v̇0 = −Fs(v0, s0). (29)
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Finally, predict the dependent variablev by linear extrapolation along the direction vector, that is,

vp := v0 + ∆sv̇0. (30)

Equivalent expressions in terms of the original functionf , and the original variablesx andλ are
now easy to derive. Given the pointsv0 = (x0, λ0) ands0 which satisfy (27), predict the next point
(xp, λp) on the path as

sp = s0 + ∆s (31)[
xp
λp

]
=

[
x0

λ0

]
−∆s

[
fx(x0, λ0) fλ(x0, λ0)
ξx(x0, λ0, s0)T ξλ(x0, λ0, s0)

]−1 [
0

ξs(x0, λ0, s0)

]
. (32)

The Newton corrector, in terms ofv, is

vk+1
p = vkp −

[
Fv(vkp , sp)

]−1
F(vkp , sp), (33)

or equivalently, in terms ofx andλ, is[
xk+1
p

λk+1
p

]
=

[
xkp
λkp

]
−
[

fx(xkp, λ
k
p) fλ(x

k
p, λ

k
p)

ξx(xkp, λ
k
p, sp)

T ξλ(x
k
p, λ

k
p, sp)

]−1 [
f(xkp, λ

k
p)

ξ(xkp, λ
k
p, sp)

]
. (34)

wheresp = s0 + ∆s.
Recall that the Implicit Function Theorem guarantees the existence of a unique solution curve

through any point at which the full rank condition (25) holds. A fold is a regular point, but the
natural parameter method fails to trace this curve at a fold because of a singularity in the Jacobian
of f . If the functionξ is chosen appropriately, however, the functionF in the artificial parameter
method will be nonsingular at all regular points, even folds. The remaining issue, therefore, is to
choose the functionξ thusly. Theorem 5 below is a special case of a result that appears in [9], and
it informs the choice ofξ because the Jacobian ofF in (28) takes the form of the matrixM in
theorem (5).

Theorem 5 SupposeA, b, c and d are linear operators,A : <n −→ <n, b : < −→ <n,
cT : <n −→ < andd : < −→ < and define

M :=

[
A b
cT d

]
. (35)

i. If A is nonsingular, thenM is nonsingular iffd− cTA−1b 6= 0.

ii. If A is singular withdimN(A) = 1, thenM is nonsingular iffb 6∈ Range(A) andcT 6∈
Range(A).

iii. If dimN(A) ≥ 2, thenM is singular.

After choosingξ(x, λ, s), we can apply the theorem to determine the efficacy of the parameteriza-
tion. A common choice [8], [9], [4] is the so-calledpseudoarclengthparameterization,

(label : ”pseudoarc”)ξ(x, λ, s) = ẋT0 (x− x0) + λ̇0(λ− λ0)− s. (36)
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where the directionṡx0 andλ̇0 are defined according to the direction vectorv̇0 in (30). Also, the
directions are normalized, i.e., rescaled at each step so that

‖ẋT0 ‖2 + |λ̇0|2 = 1.

The Jacobian of the pseudoarclength system is nonsingular along a regular path. The following
theorem summarizes the formal result. The proof [8] is based on application of theorems 5 and 4.

Theorem 6 Suppose(x0, λ0) is a regular point forf(x, λ) = 0. ThenFv is nonsingular forξ
defined as in (36).

The pseudoarclength method is the state of the art in continuation methods. When implemented
with adaptive step length schemes and efficient matrix algorithms, it is a highly effective method
for tracing regular solution paths of (5). Pseudoarclength continuation therefore constitutes an es-
sential component to a numerical scheme for constructing bifurcation curves for a system of ODEs
such as the aircraft equations of motion. Other necessary components are bifurcation detection and
branch switching. The report concludes with a brief discussion of these ideas.

3.4 Branch Switching and Bifurcation Detection

A rigorous mathematical definition of a bifurcation requires the concept of topological equivalence
of phase portraits [6]. For simplicity, however, one can think of a bifurcation as a point on a solution
curve at which two or more solution branches intersect. As noted, the Implicit Function Theorem
implies that a unique solution branch passes through any regular point, therefore a bifurcation can
only occur at solutions which do not satisfy the full rank condition (25). That is, a necessary
condition for bifurcation at the solution(x0, λ0) is

rank [fx(x0, λ0) fλ(x0, λ0)] < n. (37)

Basis vectors for the null space of[fx(x0, λ0) fλ(x0, λ0)] and its transpose can be used to determine
if bifurcation occurs at a singular point. Furthermore, the basis vectors ofN([fx(x0, λ0) fλ(x0, λ0)])
are used to calculate direction vectors of the branches which appear. The remainder of this section
outlines the procedure for asimple singular point, which is by definition a point where the rank
deficiency in (37) is exactly 1. A discussion of the procedure for higher order singularities appears
in [3].

Suppose(x0, λ0) is a simple singular point. Then (26) implies that

dimN ([fx(x0, λ0) fλ(x0, λ0)]) = 2

dimN([fx(x0, λ0) fλ(x0, λ0)]T ) = 1.

Hence, there exist vectorsφ1, φ2 that span the null space of[fx(x0, λ0) fλ(x0, λ0)], and a vectorψ
that spans the null space of its transpose. It can be shown [3] that bifurcation at a simple singular
point occurs if the so–calledalgebraic bifurcation equation(ABE)

ψT fvv(x0, λ0)φ1φ1α
2 + 2ψT fvv(x0, λ0)φ1φ2αβ + ψT fvv(x0, λ0)φ2φ2β

2 = 0 (38)

has two distinct real solutions,(α1, β1) and(α2, β2). The ABE is derived by calculating second
orders–derivatives of (5) and recognizing that certain terms vanish when the resulting equation is
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left–multiplied by the transpose ofψ [4]. Note thatv = [x λ]T . For brevity, put

a11 = ψT fvv(x0, λ0)φ1φ2

a12 = ψT fvv(x0, λ0)φ1φ2

a22 = ψT fvv(x0, λ0)φ2φ2.

Then (38) has two distinct real solutions whena2
12 − a11a22 > 0, and a two–branch bifurcation

occurs at(x0, λ0).
An effective continuation method should trace branches that appear at bifurcation points. In

order to do so, one must have a direction vector for each new branch that emerges from the bifur-
cation. Keller shows [8] that if a simple singular point is a bifurcation, then there are two branches
and the direction vectors satisfy

(ẋ, λ̇)T = αiφ1 + βiφ2, i = 1, 2. (39)

One can therefore use the direction vectors in (39) to define two separate continuation paths by
applying equation (30) in an artificial parameter method for each direction vector.

If a simple singular point is given, computing the bifurcation directions is straightforward. The
continuation method traces the curve in steps, however, and it is therefore likely that, in practice,
the method will “skip over” bifurcations. Hence, a continuation method must also include a capa-
bility for detection of singular points. In general, one monitors a test function which changes sign
at a singular point. For the pseudoarclength method, the test function is simply the determinant
of the Jacobian of the augmented system (28); this determinant changes sign at a simple singular
point [8]. After determining the existence of a singular point, one can apply a numerical method
such as that of Seydel [16] to calculate the point, then proceed to find the direction vectors as
above.

4 SOFTWARE

Some continuation software packages are available. CONSOL is a FORTRAN package for solving
polynomial systems using the embedding procedure outlined in section 3.2. CONSOL is available
in [14]. AUTO is a package for limited bifurcation analysis of general ODE systems. Information
and documentation, as well as FORTRAN and C versions are available through the AUTO website,
http://cmvl.cs.concordia.ca/auto/
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